Developing skills through knowledge exchange: Mr Viswadeep Sarangi
In this Q&A, Mr Viswadeep Sarangi, Postdoctoral Research Associate at the University of York, discusses how he used our secondment schemes and funding opportunities to further his research.
Project summary: We are developing a way to monitor conditions that affect how a person moves and walks (gait analysis), such as Osteoarthritis. Our Artificial Intelligence (AI)-based diagnosis and rehabilitation monitoring system will be capable of detecting abnormalities in how a patient is walking and use this information to diagnose certain conditions and let healthcare professionals monitor their patient’s progress over time. We hope to have readily deployable software, which will let the clinician capture someone’s gait using a simple webcamera, extract the 3D body pose from the capture and analyse it; using simple, easy to use software.
Collaborators: Dr. Nicholas Shenker, Consultant Rheumatologist, Addenbrookes NHS Hospital, Cambridge, Dr. Thomas Stone, Senior Clinical Scientist, Addenbrookes NHS Hospital, Cambridge, Dr. Mark Andrews, Orthopaedic Surgeon, Scarborough Hospital, Scarborough, Prof. Elan Barenholtz, Associate Professor, Dept. of Psychology, Florida Atlantic University, Florida, US, Dr. William Hahn, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Florida, US, Elsje de Villiers, Reseach Physiotherapist at CUH, Dr. Greg Quinn, Orthopeadic Surgeon, York Teaching Hospital, Matthew Bowes and Joanne Thompson, senior physiotherapists at YTH
Q. How have you found working with co-development partners and what benefits has it brought to your technology?
Working with so many surgeons, doctors and senior physiotherapists has helped me understand exactly how an ideal solution should be developed to ensure ease-of-use and minimal disruptions to their existing practices. The partners have been extremely kind and understanding, while I was following them around observing their practices for multiple days.
Observing the clinical practitioners helped me understand the importance of a well-developed solution with an intuitive UI and easy UX. I have begun appreciating the notion that, a solutions needs to be usable as well as be technically advanced, to create real impact.
It has been extremely insightful working with the project’s co-development partners, my contact with so many healthcare professionals allowing me to merge their clinical insights with my technical expertise so that we can make the system clinically-relevant. It definitely shaped the build of the technology, with real-time clinical feedback enabling us to optimise the system.
The project has recently benefited from an Innovate UK grant and this has brought industry experts into the project development. I have learnt so much from industry people who are actually developing these sorts of technologies, for example how to stand out from the competition and dominate the market. It has been an amazing learning curve.
Q. Where was your career and project when Grow Medtech got involved?
I have been involved with Translate since the beginning of my PhD. I was still pursuing my PhD when Grow MedTech got involved. This provided me with the perfect opportunity to take the insights and discoveries I had made in my PhD and start creating a tangible product around it so that clinicians could use it in their everyday practice.
When I first got involved with the project, I had just finalised the techniques but it was research-based and not streamlined – certainly not ready for a commercial application. I was not expecting to be in a position to start the commercial development myself – the Translate and Grow MedTech support came at just the right time and was a perfect match for my own ambitions. Without their intervention I would have finished my PhD and written an academic paper for someone else to take on the commercialisation.
Q. How did Grow MedTech and Translate MedTech help?
I have received multiple secondments from Translate, to help me travel both inside UK (Cambridge, York) and outside UK (Florida, USA) to understand clinical practices in both countries and design a solution which can help address both needs, while making sure to be intuitive enough so that any clinician from any other geographic location can use it without any major difficulties.
I was given the opportunity to make many clinical contacts that I wouldn’t have otherwise, including the chance to shadow a surgeon and physiotherapist at York Teaching Hospitals NHS Foundation Trust for a few days. I noted what tools they were using to do their job and could see firsthand how we would need to design our own tech so that they wouldn’t have to learn to use new systems (it was abundantly clear to me that they had no time for this). I had the same opportunity in the Florida clinic and asked the clinicians what they were currently using and it was illuminating to see the similarities and contrasts between the UK and US healthcare systems.
I’ve also received multiple awards from Translate for best speaker and best poster presentation in conferences, for my PhD research.
Grow MedTech funding has supported the early commercial development, with two Proof of Market awards which allowed us to gather market intelligence, competitor analysis and industry insights. I have been able to continue to work on the project after my PhD, as one of the University of York Grow MedTech-funded PDRAs.
Q. How has your career developed during your project?
I have witnessed and been in the forefront of the translational journey from an idea, through research, validation, implementation and finally deployment as a commercial application. This experience has been invaluable. I am now confident of my skills both in core research, academia, as well as, in the industry with my software engineering skillset.
The product we (me and Dr. Adar Pelah) have developed in less than a year is now ready for market and is currently being used in multiple clinics both in UK and US, for conducting clinical trials.
As well as my PhD, I have gained all of that knowledge and put it to use into building the commercial application. The crux of this is the strong ‘Translational’ focus and this has been a huge jump from my ‘ad hoc’ academic approach in the beginning to now working with a commercial team on a clinically-relevant product. I have witnessed and experienced the translational journey first-hand.
Q. What is the most unique or interesting thing about this project?
We have developed the first-of-its-kind end-to-end solution for capturing someone’s gait using a normal web-camera, apply AI techniques to understand their body pose in 3D space, employ a different set of AI techniques to understand what their body movements mean. Simultaneously providing real-time visual and audio biofeedback to help them recover faster during their physiotherapy.
Q. How did you first get involved in your specialist area? What sparked the idea?
I’ve known my PhD supervisor and now my RA PI, Dr. Adar Pelah, for about nine years now. I’ve always been interested in Computer Vision and AI and I came across Dr. Pelah’s work in 2012 when I was actively searching for researchers who were working in the area after completing my Undergraduate Degree and Masters in India. We started working together and never stopped. As soon as AI became popular and the toolsets became accessible, we knew this was the time to take our ideas to market.
When I was working as a software developer in California, I wanted to use my skillset to help develop medical AI products, as I come from a family of medical doctors.
Q. What inspires you?
Building things which help people. I love building tech. I was inspired by my strong family values to help people through medicine – medical AI is the perfect juxtaposition of tech and clinical need..
Q. What impact do you hope your work will have on the world?
I hope make medical services easier to access for laypeople. I hope to cut down time required to see a medical professional, and in their absence, provide a technology based solution to access the same services. We are on the brink of releasing a product and selling this as a service.